Using Crowded-source based feature from social media and Conventional features to predict the movies popularity Paper reproduce and other attempts

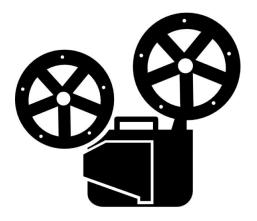
Chong Hu(ch3467) Wenjie Chen(wc2685) Haoran Zhang(hz2619)

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

Dataset description

Movies Dataset

Dataset Description



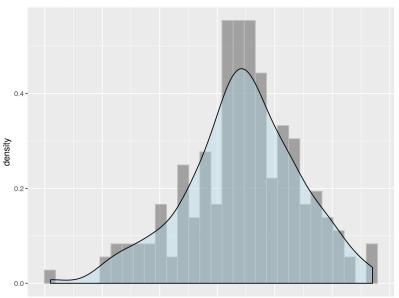
Predicting the success of movies has been of interest to economists and investors as well as predictive analysts. A number of attributes such as cast, genre, budget, production house, PG rating affect the popularity of a movie. Social media such as Twitter, YouTube etc. are major platforms where people can share their views about the movies. In this project, we collect all these features to make a prediction of movies' ratings using machine learning techniques.

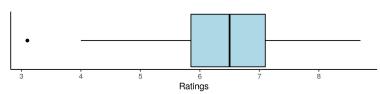
Dataset Description

Resource: IMDB, Youtube and Twitter

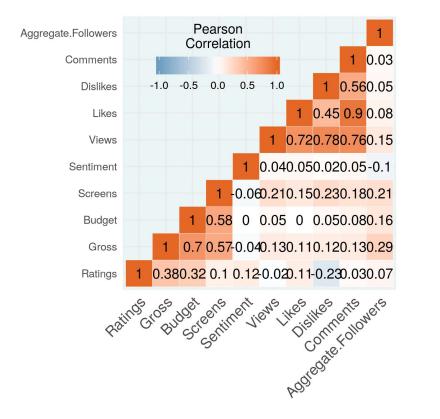
11 features are divided into two groups:Conventional Features (5 types)&Social Media Features (6 types)To Predict **Rating**

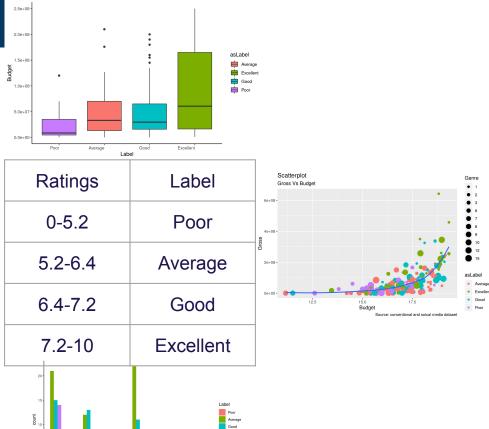
Movie Ratings distribution can be seen from the graph on the right





Dataset Description





Exceller

Genre

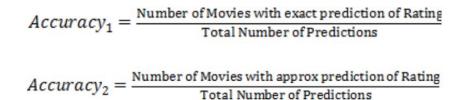
- Decision Tree (J48)
 - Random Forest
 - Support Vector Machine
 - Naïve Bayesian
 - LDA, QDA
- Artificial Neural Network

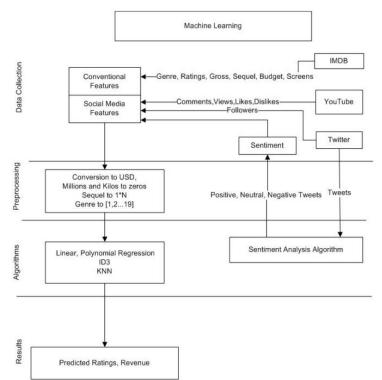
Paper detail and reproduce

Section Subtitle Section Subtitle

First, values of Ratings are predicted using all other attributes except Gross Income (as gross income is not available before release). As Rating is a continuous numeric attributes, we have performed Linear Regression in order to predict the values.

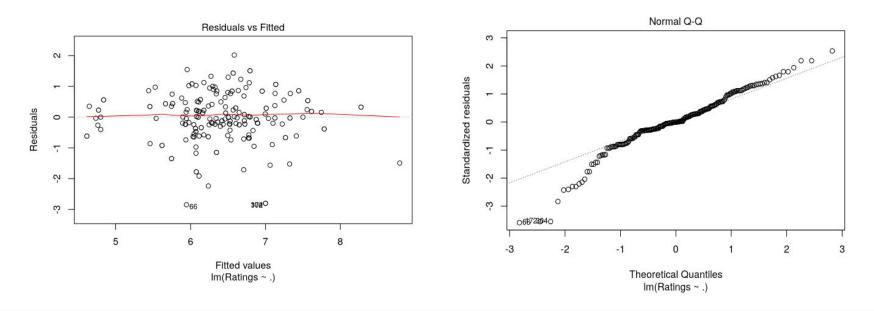
Second, apply linear regression.



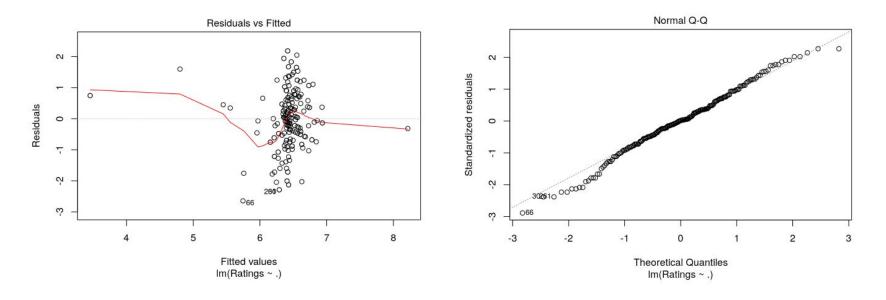


8 | Predict Movies Popularity

conventional features formula = Ratings ~ ., data = conventional_train.df

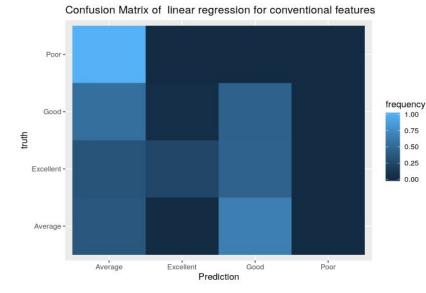


social media
formula = Ratings ~ ., data = socialmedia_train.df



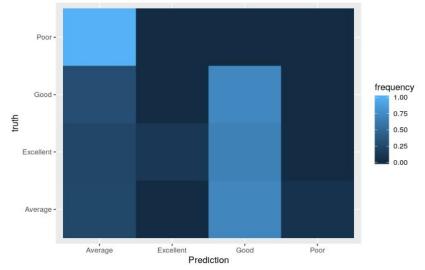
10 | *Predict Movies Popularity*

convention soft accuracy: 78.57% classification accuracy: 35.71% MSE: 0.7018



social media soft accuracy: 75.0% classification accuracy: 44.64% MSE: 0.7167

Confusion Matrix of linear regression for social media features



Generalised Linear Regression

convention

use Gamma (link = "log") as link function

1.00

0.75

0.50

0.25

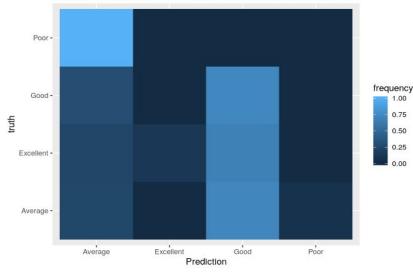
0.00

social media

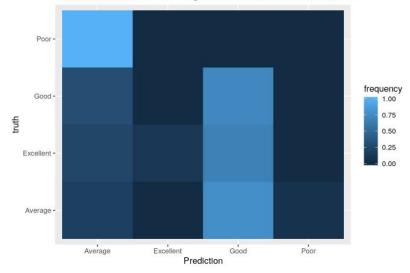
soft accuracy: 73.21%

classification accuracy: 42.85%

soft accuracy: 76.78% classification accuracy: 34.71% MSE: 0.7018



MSE: 0.7157



Generalised Additive Model

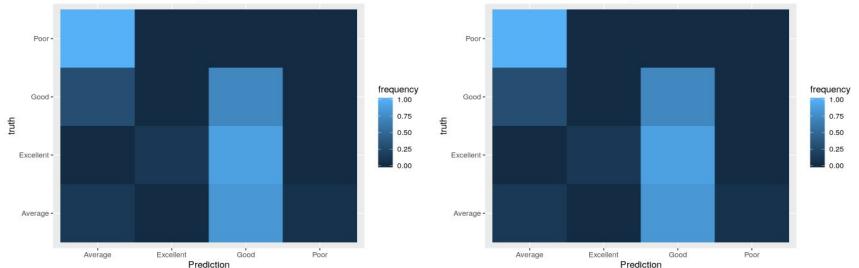
use 'Gamma (link = "inverse")' as link function

convention soft accuracy: 73.21% classification accuracy: 39.28% MSE: 0.7079

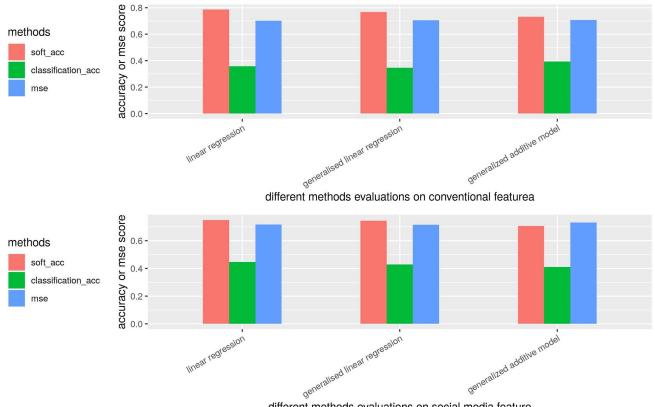
Confusion Matrix of linear regression for social media features

social media soft accuracy: 70.56% classification accuracy: 41.07% MSE: 0.7321

Confusion Matrix of linear regression for social media features



13 | *Predict Movies Popularity*

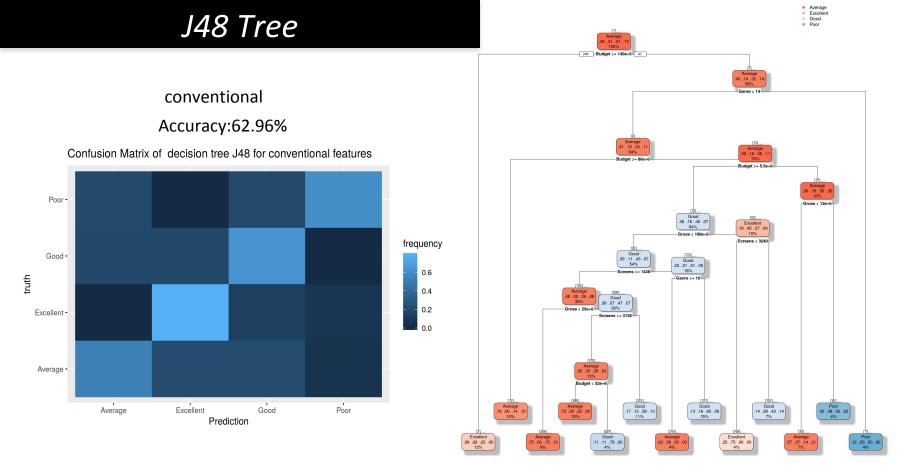


different methods evaluations on social media feature

 $Accuracy = \frac{\text{Number of Movies with correct prediction of BandofRating}}{\text{Total Number of Predictions}}$ $Info(D) = Entropy(D) = -\sum_{j} p(j|D) logp(j|D)$ $\sum_{j}^{v} n_{j}$

$$Info_{A}(D) = \sum_{i=1}^{n} \frac{n}{n} Info(D_{i})$$

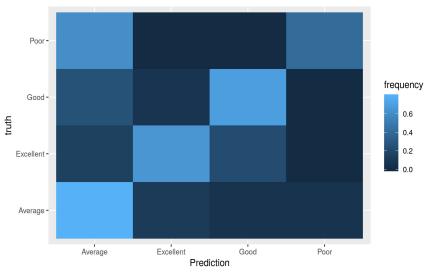
Gain (A) = Info(D) - Info_A(D)



J48 Tree

social media Accuracy:68.52%

Confusion Matrix of decision tree J48 for social media features

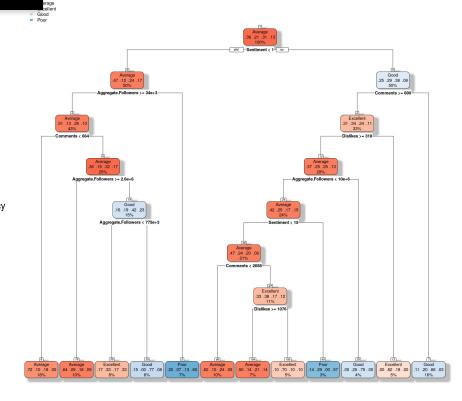


0.6

0.4

0.2

0.0

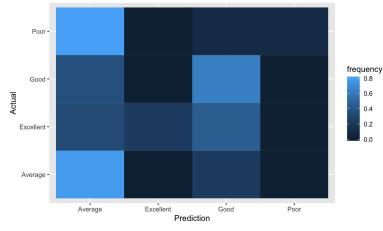


Other Techniques

Support Vector Machine

Accuracy:0.4359

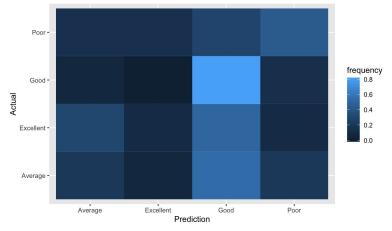
Confusion Matrix of Support Vector Machine Conventional Feature



Kernel: radial

Accuracy:0.3846

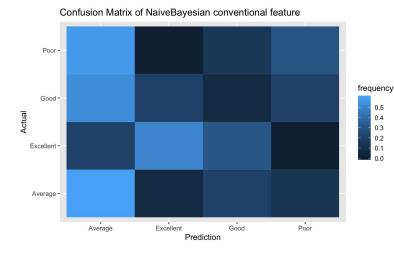
Confusion Matrix of NaiveBayesian social media feature



Kernel: polynomial gamma: 1 coefficient: 7 degree: 3

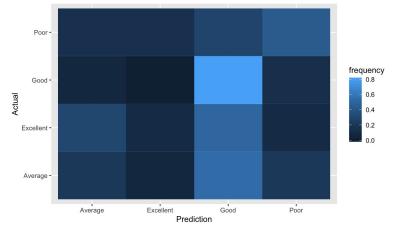
Navïe Bayesian

Accuracy:0.3617



Accuracy:0.4043

Confusion Matrix of NaiveBayesian social media feature



LDA & QDA

0.8

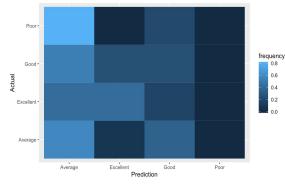
0.6

0.4

0.2

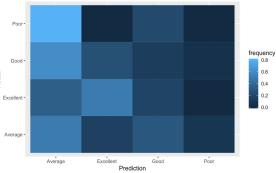
0.0

Confusion Matrix of LDA Conventional Feature

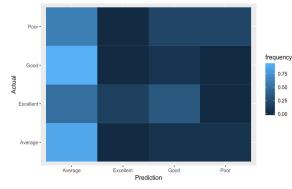


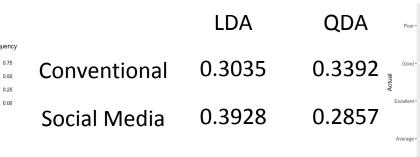
Poor Performance

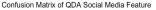
Curse of High Dimension

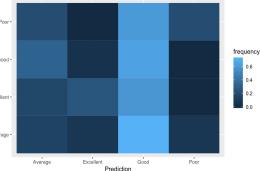


Confusion Matrix of LDA Social Media Feature









21 | *Predict Movies Popularity*

Artificial Neural Network

Architecture :

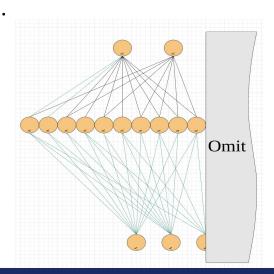
Number of units in the hidden layer = 20,

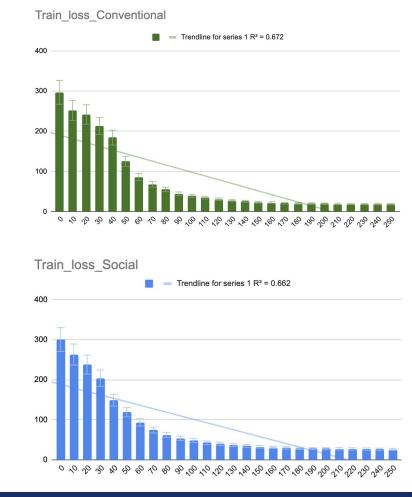
Initial random weights=0.2,

Weight decay=5e-4,

Maximum number of iterations = 250,

Skip=1.





Artificial Neural Network

Convention:

Test accuracy for conventional media feature and social media feature respectively

0.6

0.4

0.2

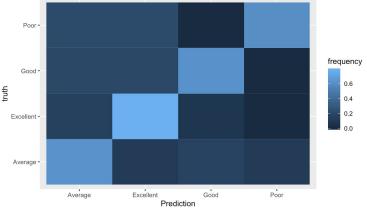
Confusion Matrix of Artificial Neural Network for conventional media features Poor frequency Good truth Excellent -Average -Excellent Average Good Poor Prediction

accuracy: 66.67%

Social Media

accuracy: 62.96%

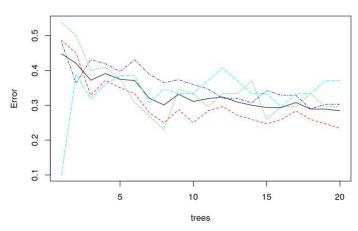
Confusion Matrix of Artificial Neural Network for social media features



Random Forest

Convention:

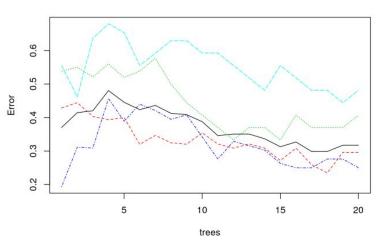
training error for 20 subtrees



conventional.mod

Social Media

training error for 20 subtrees



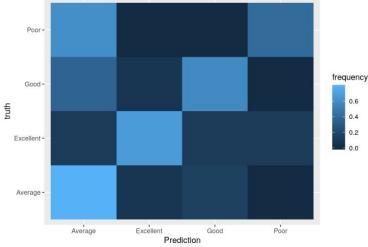
socialmedia.mod

Random Forest

Convention:

accuracy: 62.5%

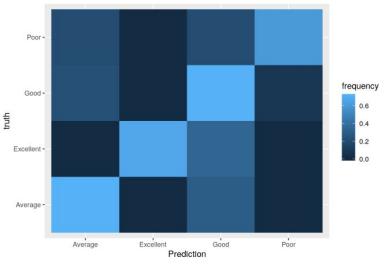
Confusion Matrix of random forest for conventional features



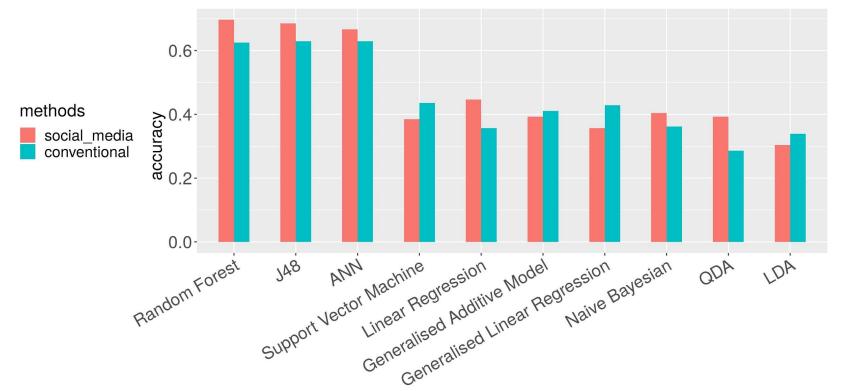
Social Media

accuracy: 69.64%

Confusion Matrix of random forest for social media features



Conclusion and Discussion



Different methods evaluations on convensional features and social media features

Thank you

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

. 6. 6.

