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Abstract

This project tackles the task of video object
segmentation, i.e., the separation of a foreground
object from the background in a video, given
the mask of the first frame, and builds a web
application to visualize the result. We applied
One-Shot Video Object Segmentation (OSVOS)
to recognize and separate a foreground object
based on DAVIS 2016 dataset. On the other
hand, we build up a web interface for user
to upload video and preview rendered video
with segmented labelled object, along with
additional function like data visualization of
object’s motion trajectory. Code is available at
https://github.com/JackSnowWolf/
video-object-segmentation

1. Introduction
The objective of Video Object Segmentation is

to extract foreground objects from video clips. It
has many applications such as: video editing, ob-
ject tracking, video action detection, autonomous
driving, etc. Object segmentation and object
tracking are both fundamental research area in
the computer vision area. Public benchmarks and
challenges have been an important driving force
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in the computer vision field, with examples such
as Imagenet for scene classification and object de-
tection, PASCAL for semantic and object instance
segmentation, or MS-COCO for image captioning
and object instance segmentation. From the per-
spective of the availability of annotated data, all
these initiatives were a boon for machine learning
researchers, enabling the development of new al-
gorithms that had not been possible before. Their
challenge and competition side motivated us to
participate and push towards the new different
goals, by setting up a fair environment where test
data are not publicly available.

According to above motivations, in our project,
we are engaged in combining the objective of
video object segmentation and the implementa-
tion of some big data techniques like data visual-
ization and web application. That is to say, our
project is composed of two parts, realizing the
video object segmentation and visualizing the re-
sult in our web application. So, the first contri-
bution is to successfully do video object segmen-
tation based on DAVIS 2016 dataset and we will
present our performance evaluation. The second
contribution and innovation is to successfully de-
sign and build a web interface based on django
framework and interact with back-end OSVOS
model and flask api, visualizing the result and pre-
senting it on the web. The third innovation is to
do data visualization to describe the object offset

1

https://github.com/JackSnowWolf/video-object-segmentation
https://github.com/JackSnowWolf/video-object-segmentation


and motion trajectory.

2. Related work

Semi-supervised Video Object Segmenta-
tion: Most of the current researches aim to seg-
ment video objects based on preliminarily pro-
vided foreground regions, and propagates them
to the remaining frames. In [3], Budvytis et
al. proposed a patch-based probabilistic graphi-
cal model, which uses a temporal tree structure
to link patches in adjacent frames to exactly infer
the pixel labels in video. Plenty work have been
done to solve video object segmentation by using
deep learning method. Märki et al. [8] used bilat-
eral space to minimize the new energy on the ver-
tices of a regularly sampled spatio-temporal bilat-
eral grid. Perazzi et al. [9] also proposed a Mask-
Track ConvNet and performed per-frame instance
segmentation by using the detections of the pre-
vious frame, along with Optical Flow and post-
processing with CRFs. Xu et al. [17] presented
a Spatio-temporal CNN that used pretrained tem-
poral coherence branch to capture the dynamic
appearance and motion cues of video sequences
to guide object segmentation and spatial segmen-
tation branch extract semantic information from
one single frame.

Different from those approaches, OSVOS is a
simpler pipeline which segments each frame inde-
pendently. Introducing temporal information only
helps to improve the model accuracy a little but
brings a lot of redundant computation to extract
temporal information among continuous frames.
Those methods that combine the spatial and tem-
poral together can’t be applied in industry di-
rectly. To learn temporal information among con-
tinuous frames also means the computation of few
images should be processed separately and there-
fore occupy much larger GPU resources. How-
ever, the method we used is significantly faster
and can be easily industrialized.

3. Data
DAVIS-2016[10]: The dataset, named DAVIS

(Densely Annotated VIdeo Segmentation), con-
sists of fifty high quality, Full HD video se-
quences. The dataset was collected by Perazzi
et al. [10] deliberately. It contains multiple
occurrences of common video object segmenta-
tion challenges such as occlusions, motion-blur
and appearance changes. Each video is accom-
panied by densely annotated, pixel-accurate and
per-frame ground truth segmentation. In addition,
they also provide a comprehensive analysis of
several state-of-the-art segmentation approaches
using three complementary metrics that measure
the spatial extent of the segmentation, the accu-
racy of the silhouette contours and the temporal
coherence. In our project, we will also use those
three metrics to evaluate our performance.

Figure 1. DAVIS-2016: Sample sequences with
ground truth segmentation masks overlayed.

Complementary Dataset: Except DAVIS-
2016, we also can also use other datasets, such as
DAVIS-2017 [12], Youtube dataset [1]. Although
they are not fully marked with every frames, they
are designed for video object segmentation and
we can use them as complementary dataset.

4. Method
4.1. One-Shot Deep Learning

The basic idea of One-Shot deep learning is in-
spired by human behaviors. Let assume that one
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Figure 2. Overview of OSVOS: (1) The base network uses a pre-train base CNN for image labeling on ImageNet;
the pre-trained weight here is only used for transfer learning. (2) Train on the DAVIS training dataset to segment
common general objects . (3) Adjust for certain appointed foreground object to keep track the segmentation of
that object.

human wants to segment one object from a se-
quence of continuous or a short video. Intuitively,
this process is related to two kinds of behavior:
human need to recognize a object from one frame,
analyze the entity and memorize some features
of that object, in order words, one need to gen-
erate a model to recognize a foreground object
from background object; then, one can search for
that object in the subsequent image sequence and
track the object in the video. For human, we only
need very limited amount of information to rec-
ognize the object from the first frame and locate
the object in new frames even with changes in ap-
pearance, shape, occlusions, etc. One may easily
find the object in the subsequent image by his pre-
vious memory about that object. This procedure
is related to strong priors: one need to first realize
that ”it is an object” and then ”it is the object that
I want to focus”. The one-shot method is based
on this logic.

Let’s first talk about the training steps of One-
Shot deep learning. A Fully Convolutional Neu-
ral Network (FCN) is the backbone of the whole
structure. It is used for binary classification to
separate the foreground object from the back-
ground. According to the method provided by
the Caelles et al. [4], the following training steps
are: First, by using common foreground objects

dataset for segmentation, construct a model that
is able to discriminate the general notion of the
foreground object, i.e., ”it is an object”; then, fine-
tune the network for a small certain number of it-
eration so that the model can recognize the object
in the subsequent image sequence, i.e., ”it is the
object that I want to focus”. The overview of the
whole training procedure is shown in Fig. 2

4.2. End-to-end Trainable Foreground U-Net

The network structure is based on the CNN ar-
chitecture provided by Maninis et al. [7]. The
original network structure is used for biomedical
image segmentation and also has been proved that
it is also valid in common images. It also provides
some good features: 1. accurately localized seg-
mentation output; 2. relatively small of param-
eters to train from a limited amount of annotated
data; 3. Relatively faster inference time. The back
bone of this CNN architecture is VGG [15], a very
traditional structure used to extract information
from image efficiently. Inspired by [13], a simple
revised version is applied in our project. The net-
work architecture extracts high dimensional infor-
mation through down sampling through convolu-
ational layer and pooling layer; and then, it uses
up-sampling to restore the label of each pixel. The
traditional network VGG has groups of convo-
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lutional plus Rectified Linear Units (ReLU) lay-
ers grouped into 5 stages. Our structure connects
convolutional layers to form separate skip paths
from the last layer of each stage (before pooling).
In the up-sampling procedure, feature maps from
the separate paths are concatenated to construct a
volume with information from different levels of
detail. We linearly fuse the feature maps to a sin-
gle output which has the same dimensions as the
image, and we assign a loss function to it. The
proposed architecture is shown in Fig. 3 (1), fore-
ground branch.

Figure 3. Two-branch architecture: The main fore-
ground branch (1) is used to detect the rough loca-
tion of the foreground object; Contour branch com-
plements the main foreground branch and provides a
more accurate boundaries (3).

4.3. Loss Function

Since we only consider to segment foreground
object from background object, the pixel-wise
cross-entropy loss for binary classification is used
as optimizing target in this case. The original

form is definied as:

L(W) =−
∑
j

(
yjlogP(yj = 1|X;W)

+ (1− yj)log(1−P(yj = 1|X;W))

)
=−

∑
j∈Y+

logP(yj = 1|X;W)

−
∑
j∈Y−

log(1−P(yj = 1|X;W))

(1)

where W are the standard trainable parameters
of a CNN, X is the input image, yj ∈ {0, 1}, j =
1, . . . , ||X|| is the pixel-wise binary label of X,
and Y+ and Y- are the positive and negative la-
beled pixels. P(·) is obtained by applying a sig-
moid to the activation of the final layer.

However, in order to handle the imbalanced
case between the two binary classes, we used bal-
anced pixel-wise cross-entropy loss proposed by
Xie et al. [16]. The modified version of the cost
function, originally used for contour detection is:

Lmod =− β
∑
j∈Y+

logP(yj = 1|X;W)

− β
∑
j∈Y−

log(1−P(yj = 1|X;W))

(2)

4.4. Contour Snapping

By only using the foreground branch, it is not
enough to locate the foreground object accurately.
After add skip connections to minimize the loss
of spatial accuracy, the model performance is not
satisfying. However, in terms of contour local-
ization, the model performance can be still im-
proved. There two strategies provided by original
paper in this regard.

First, the Fast Bilateral Solver (FBS) [2] can be
used to snap the background prediction to the im-
age edges. It performs a Gaussian smoothing in
the five-dimensional colorlocation space, which
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results in a smoothing of the input signal (fore-
ground segmentation) that preserves the edges of
the image. It has two advantages: it is fast, which
means it can be applied in practice; it is differen-
tiable so it can be included in an end-to-end train-
able deep learning. However, this method is not
enough since it might preserve some naive image
gradients.

To solve this question and improve more result,
the second strategy is introduced. The basic idea
is to use another branch, contour branch, as shown
in Fig. 3 (2), to predict accurate boundary of a ob-
ject. It works as a complementary CNN and it
is trained to detect object contours. Those two
branches have exact same structure, but trained
for different losses. Finally, in the boundary snap-
ping step Fig. 3 (3), the model computes super-
pixels that align to the computed contours (2) by
means of an Ultrametric Contour Map (UCM)
[11]. Then, then model can take a foreground
mask (1) and we select superpixels via major-
ity voting (those that overlap with the foreground
mask over 50%) to form the final foreground seg-
mentation result.

5. Experiments
5.1. Implementation Details

Data The experiments will basically conduct
on DAVIS-2016 dataset. Inside the dataset, we
use 30 video sequence as training dataset and 20
video sequences as test dataset. The image frame
during traing is 480p (480× 854) Evaluation will
be executed on the 20 video sequence test dataset.
During the training procedure, we also applied
data augmentation, such as flip and crop, to in-
crease the robustness of our model. We use threes
metric to evaluate the model performance: Re-
gion SimilarityJ , Contour AccuracyF and Tem-
poral stability T .

Training Details Based on the overview of OS-
VOS in Fig. 2, the training procedure can be di-
vided into three steps: pre-training on ImageNet;
offline training on DAVIS training dataset; online

training/testing for specific foreground object.
The base model weight is pre-trained on Im-

ageNet for image labeling [15], which has been
proved to be a very good initialization to other
tasks [14, 6, 5, 18]. We do not train a VGG
network from scratch. Instead, We use the pre-
trained weight on ImageNet provided by Tensor-
Flow.

Then, we need to train the network on the train-
ing set of DAVIS, to learn a general common
features that can help to segment objects from
their background, e.g. their usual shapes, spe-
cial color, etc. We use ADAM with momentum
0.9 for 50000 iterations, which is slightly differ-
ent from original paper. The initial learning rate is
set to 10−8. This model is called Parent Network
as shown in Fig. 2.

After we get the Parent Network model weight,
it can be applied in online training/testing. In
order to segment a particular foreground object,
the model further adjusts (fine-tune) for the im-
age and the segmentation of the first frame. Then
the new weight can be used to predict subsequent
video frames. The fine-tuning time (once per an-
notated mask) and the segmentation of all frames
(once per frame) affect the total inference time.
And the trade-off between quality and time should
be also considered.

5.2. Result

After we get the parent network weights,
we fine-tine that on test video sequences and
make predictions on following new image frames.
Fig. 4 shows some qualitative predication results.
In the figures, we can compare the ground truth
with prediction mask directly. The green mask
represents the ground truth; the red mask rep-
resents the error segmentation. Those examples
show us the prediction can match the ground truth
very well, even after several image frames. We
can see there are only some parts of area near the
boundary are colored with red. This could prove
that the model can have good performance on ob-
ject localization and boundary detection. How-

5



ever, for some other video sequences, with high
blur, or high motion, our model is not very satis-
fying.

Figure 4. Qualitative Predication Results: Predic-
tions on twenty test sequences; the green mask rep-
resents the ground truth; the red mask represents the
error segmentation.

5.3. Evaluation

Metric Ours Original

Region Similarity J 76.4% 79.8%
Contour Accuracy F 78.2% 80.6%
Temporal stability T 34.5 37.6

Table 1. Comparison with original paper on twenty test
sequences.

For predictions on the test dataset, we also run
the three metrics we mentioned before to evalu-
ate model performance. Fig. 5 shows that Region
Similarity J , Contour Accuracy F and Temporal
stability T per video sequences. From the plot,
we can clearly see that the overall performance
on test dataset is relatively good. However, we
can also see that on some video sequences, such
as Bmx-Trees (which is riding a bicycle across
trees with high speed), Dance-Twirl (which is a
person dancing in front of a bunch of people,
and the dancing person is foreground), the model
doesn’t perform very good. That might because
foreground object itself is not easily to separated

from background objects, or the speed is too fast.
Table. 1 shows a comparison result with the orig-
inal paper. As we can our performance is still a
little bit lower than original method. We believe
that difference is not large and can be reduced by
further adjusting hyper-parameters. Overall, our
method to segment foreground method is valid.

6. System
6.1. Overview

Basically, our system aims to support preview-
ing uploaded video with segmented foreground
object, and expected outcome is to separate fore-
ground objects with larger than 75% overlapping
with ground-truth on average, and to provide API
for video website and simple web front-end for
demo. As is shown in Fig. 6, this simple overview
diagram of system illustrates how system works
and how front-end and back-end interacts. We
will elaborate on the structure of both front-end
and back-end separately, along with their interac-
tion methods in details.

Environment TensorFlow 1.14, CUDA
9.2, CUDNN 7.2.1,
OpenCV 3.4.3, FFmpeg

Back-end Flask
Front-end django, video.js/D3.js

Table 2. Environment and Framework.

6.2. Front-end

We provide this web application to visualize
the result. Using django to build a web interface.
User can upload the original video on the web
interface. After the interaction between django
and flask api, finally, user can watch the rendered
video on web interface. So, front-end structure
is based on Django frameworks, and the interface
is based on local host. So we start with ’python
manage.py runserver’, then we can open with lo-
calhost/homepage to view our website.
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Figure 5. DAVIS Validation: Evaluate model performance on twenty test sequences using Region Similarity J ,
Contour Accuracy F and Temporal stability T .

Figure 6. Overview diagram of system: (1) User can upload a video along with its name and first mask of this
video on website upload interface. (2) Once video is uploaded, Django would send the video to Flask API. (3)
Back-end uses model to predict segmented label and render the uploaded video. (4) API send back the rendered
video to front-end so that user can preview the rendered video on the interface.

The user interface is actually a website that
includes five parts in the navigation bar: home-
page, video upload, video preview, data visual-
ization and video gallery. Therefore, there are ac-
tually five html templates in our front-end struc-
ture. on homepage, we present some basic intro-
ductions of our project. on video upload page,
user can upload a video file with a name and a
first-mask picture file. On video preview page,
once a video is uploaded by a user, Django would

send requests.post to flask api. Api will get the
uploaded video and return the rendered video. So,
after user press the upload button on video upload
page, our web will directly redirect to the video
preview page so that user can watch the video and
get the information about this rendered video at
the video page once the rendered video is ready.
For a small video file, for example, a video is less
than 15MB as we used in demo, user can watch
rendered video at once. On visualization page,
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we present a 3D scatter plot to describe the overall
offset of the position coordinates of the object we
are tracking, corresponding to the motion trajec-
tory of the object in the video. X-axis and y-axis
represent the horizontal and vertical coordinates
of the object. Z-axis represents time, in unit of
each frame. On gallery page, there is a gallery
presenting all the cached rendered videos in our
project.

6.3. Back-end

Back-end system is composed of the flask api
and the model we discussed in method. Once
the video is uploaded, django would send request
post to the url that our flask api provides. Flask
api then gets the uploaded video, implements data
preprocess, uses osvos model to predict the seg-
mentation label in the video(track object), ren-
der the video and return it back to django. As
for the prediction part, what the model does is
to predict the segmentation label of this video so
that we can know whether each pixel belongs to
the object we want to separate. So basically, all
these back-end procedures are all done sequen-
tially inside one program, which includes getting
uploaded file, hitting video in cache if this video
is cached before or using osvos model to predict
and render if not cached, and returning the ren-
dered video back to django.

6.4. Data Visualization

In data visualization part, our intention is to
present some data behind the video object seg-
mentation and visualize it. Once we predict the
segmentation label of uploaded video, we can
know whether each pixel is the object we want to
separate. After that, we can obtain the position in-
formation (x, y) of the target object in each frame
of the rendered video, including the midpoint po-
sition, upper left corner position, upper right cor-
ner position, lower left corner position, and lower
right corner position of the object’s rectangular
frame. The data we get is a 80x6 txt data, the
columns describe the x horizontal and vertical co-

ordinates of midpoint, left-upper corner point and
right-lower corner point of the object. So the time
series is from 1 to 80, and we do data augmen-
tation to get another two points, left-lower corner
point and right upper corner point. Then we con-
vert txt file into csv file using pandas in order to
further use the data more conveniently. We use
javascript especially d3.js to visualization the ob-
ject position data. We implement a 3D scatter plot
to describe the overall offset of the position coor-
dinates of the object we are tracking, correspond-
ing to the motion trajectory of the object in the
video. X-axis and y-axis represent the horizon-
tal and vertical coordinates of the object. Z-axis
represents time, in unit of each frame. All the vi-
sualization is available on the web interface.

For example, we uploaded a video named
goat.mp4 which is a video recording a goat. Once
this video is rendered and goat is separated from
the background, we can get this goat’s coordinates
position data of each frame. Then user can see
the object offset 3D scatter plot on website visu-
alization page. In Fig. 7, it is the object offset
3D scatter plot of goat video. Z-axis describes
time in unit of each frame, x-axis and y-axis de-
scribes the horizontal and vertical coordinates of
the goat in the video. Clearly, we can see in this
video the goat motion trajectory is relatively un-
stable. Therefore, to some extent, it accurately
describes the object offset and motion trajectory
in this video.

7. Conclusion
In our project, we basically re-implement One-

Shot Video Object Segmentation (OSVOS) to rec-
ognize and separate a foreground object based on
DAVIS 2016 dataset. We also use visiualization
and three metric, Region Similarity J , Contour
Accuracy F and Temporal stability T , to evaluate
the model performance. We proved that this way
is valid to separate a foreground object from the
background in a video, given the mask of the first
frame. Beyond that, we also build up a web appli-
cation to provide previewing rendered video with
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Figure 7. Object (goat) offset 3D scatter plot.

segmented labelled object, along with additional
function like data visualization of object’s motion
trajectory. User could see how foreground moves,
how to track the object and other visualizations.

8. Future work
Due to time limitation, we still have a lot of

things to do. As for the method we applied to
solve video object segmentation, we still could
try to use other model structures, alternative loss
functions or refer other innovations from other pa-
per. Then we can improve the model accuracy or
speed up inference time. As for the web applica-
tion, we can optimize the logic and provide better
experience for users. Also, we can provide other
fancy functions, such as stabilizing or video edit-
ing. Beyond that, we can further consider how to
use the foreground objects in the future.
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