
OpenSC
- A Smart Contract Language

Linghan Kong (lk2811), Ruibin Ma (rm3708), Chong Hu (ch3467), Jun
Sha (js5506), Rahul Sehrawat (rs3688)

OpenSC
● Introduction
● Architecture
● Lexical Analysis
● Syntax Analysis
● Semantic Analysis
● Translate to Minic
● Demo
● Future Work

- A Smart Contract
Language

Introduction

● Similar Languages: Scilla, Pact

● Uniqueness: State Transitions

● Inspiration: DeepSEA

● Smart Contract: Simplestorage, Auction, Token

Compiler
Architecture

Lexical Analysis

● Comment

● General operation symbol

● Types

● Literal

● Built-in

Syntax Analysis

● Ocaml yacc

● CFG with attached semantic actions

● AST

○ op, type, expression, declaration,

OpenSC example

SimpleStorage:

Signature, constructor, methods

Semantic Analysis
Goal:

ast sast=========>

Semantic Analysis

● expr:
○ assign data type to expr based on each operation
○ check whether variable id in the symbol table; assign scope attribute
○ verify variable data types of binary operator, compare and assign expr
○ match map and event input data types with global variable declaration
○ match expr of method return with it return type

● constructor:
○ one and only one constructor in interface and implementation

● method:
○ match arguments data type with method declaration in interface
○ construct local symbol table

Semantic Analysis
Correct Wrong

×

√

×

×

√

√

Translate to MiniC

● What is minic ?
○ The “IR”
○ Backend is ready
○ Just in AST format

Translate to MiniC
Goal:

sast Minic AST=========>

Translate to MiniC

● How to translate ?
○ Hierarchically

Translate to MiniC

● More Details of translation
○ ABI-compatible method id

Demo

Future Work

● Constructor

● Event and log

● Multi-key Mapping

● Multiple objects

● Control flow statement (if, for statement) “

○ Guard body is now translated into ‘if statement’

Acknowledgement

● Thanks to Professor Ronghui Gu, the instructor of our course, who brought us to the PLT world and let us realize the
charm of functional programming and formal verification, both of which are what our project is based on.

● Thanks to Vilhelm Sjöberg, our project advisor, researcher at Yale and the primary creator of the DeepSEA project,
who provided us with great information on everything about the DeepSEA project, and answered our many
questions, which has been super helpful.

● Thanks to River Dillon Keefer and Amanda Liu, TAs of our course, who introduced the DeepSEA project to us and
provided very inspiring and helpful ideas on the OpenSC language syntax among other project details.

Thank You!

