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Introduction

● Similar Languages:  Scilla, Pact

● Uniqueness:  State Transitions 

● Inspiration:  DeepSEA 

● Smart Contract:  Simplestorage, Auction, Token



Compiler
Architecture



Lexical Analysis

● Comment  

● General operation symbol 

● Types

● Literal

● Built-in 



Syntax Analysis

● Ocaml yacc

● CFG with attached semantic actions 

● AST

○ op, type, expression, declaration, 



OpenSC example

SimpleStorage:

Signature, constructor, methods



Semantic Analysis
Goal:

ast sast=========>



Semantic Analysis

● expr:  
○ assign data type to expr based on each operation
○ check whether variable id in the symbol table; assign scope attribute
○ verify variable data types of binary operator, compare and assign expr
○ match map and event input data types with global variable declaration
○ match expr of method return with it return type

● constructor:
○ one and only one constructor in interface and implementation

● method:
○ match arguments data type with method declaration in interface
○ construct local symbol table



Semantic Analysis
Correct Wrong

×

√

×

×

√

√



Translate to MiniC

● What is minic ?  
○ The “IR”
○ Backend is ready
○ Just in AST format



Translate to MiniC
Goal:

sast Minic AST=========>



Translate to MiniC

● How to translate ?  
○ Hierarchically



Translate to MiniC

● More Details of translation
○ ABI-compatible method id



Demo



Future Work

● Constructor 

● Event and log 

● Multi-key Mapping 

● Multiple objects 

● Control flow statement (if, for statement) “ 

○ Guard body is now translated into ‘if statement’  
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