
1

OpenSC: A High-Level Programming Language
Focusing on Smart Contract

Jun Sha js5506, Linghan Kong lk2811, Ruibin Ma rm3708, Rahul Sehrawat rs3688, Chong Hu ch3467

I. MOTIVATION

OpenSC is an functional programming language which has similar functionality compared to Solidity.
It is statically typed and will support several features. It is a high-level language that will be primarily used
to implement smart contracts, which are programs that provide protocol for handling account behavior in
Ethereum.

Compared to other languages, we will model contracts as some simple transition systems, with the
transitions being pure functions of the contract state. These functions are expressed from one state to
another state in a list of storage mutation, storage.

II. LANGUAGE PARADIGMS AND FEATURES

OpenSC will be a high-level declarative language with strong, static typing, static scoping.
Beyond that, OpenSC will be a user-friendly language with high order functions, type inference, strict

evaluation order and partial applications. Also, our language is focusing on Smart Contract and
hence, we also provide built-in classes and functions to support that, such as Token, contract, log,
event, storage.

TABLE I
LANGUAGE PARADIGMS, FEATURES AND BUILT-IN FUNCTIONS

Paradigm Declarative Features
Type Inference

High Order Functions
Partial Applications

Type System
Strongly typed
Statically typed

Built-in Functions

Message
Token

contract
log

event
storage

Scoping Statically Scoped Evaluation Order Strict

III. HELLO WORLD

1 /*
2 Below is an simple contract of having getter and setter function with return and guard parts.

There are mainly four parts in define a method: guard which users can write pre and post
condition, storage, effect which is event and emit in solidity and return.

3 */
4 // : symbol means return should be followed by a type
5 signature Simple{
6 //x is in storage
7 storage x : UInt
8 // two methods getter and setter
9 method set: UInt

10 method get: UInt -> UInt
11 // define method set



2

12 method public set(UInt x) {
13 guard{
14 x >= 0 // since x is UInt
15 }
16 storage{
17 data = x;
18 }
19 }
20 // define method get
21 method public get() : (UInt) {
22 storage{
23 return data;
24 }
25 }

IV. OPENSC IN ONE SLIDE

1 signature TOKEN{
2
3 storage supply : UInt
4
5 map balances : Address => UInt
6 map allowances : (Address, Address) => UInt
7
8 event Transfer = Transfer of (Address, Address, UInt)
9 event Approval = Approval of (Address, Address, UInt)

10
11 constructor c : UInt -> Unit
12 method totalSupply : Unit -> UInt
13 method balanceOf : Address -> UInt
14 method transfer : (Address, UInt) -> Bool
15 method transferFrom : (Address, Address, UInt) -> Bool
16 method approve : (Address, UInt) -> Bool
17 method allowance : (Address, Address) -> UInt
18
19
20 -- implementation
21
22 constructor c (s : UInt){
23 storage{
24 supply |-> s
25 balances[Env.sender] |-> s
26 }
27 returns ()
28 }
29 method public totalSupply () : UInt{
30 guard{
31 Env.value == 0
32 }
33 returns supply
34 }
35
36 method public balanceOf (a : Address) : UInt{
37 guard{
38 Env.value == 0
39 }
40 returns balances[a]
41 }
42
43 method allowance (owner : Address, spender : Address){
44 guard{
45 Env.value == 0
46 }
47 returns allowances[(spender, owner)]
48 }
49



3

50 method transfer (a : Address, v : UInt) : bool{
51
52 guard{
53
54 Env.value == 0
55 v =/= 0
56 balances[Env.sender] >= v
57
58 -- overflow checking
59 (balances[Env.sender] - v) < balances[Env.sender]
60 (balances[a] + v) > balances[a]
61 }
62 storage
63 {
64 balances[Env.sender] |-> balances[Env.sender] - v
65 balances[a] |-> balances[a] + v
66 }
67 effects{
68 logs Transfer (Env.sender, a, v)
69 }
70 returns True
71 }
72
73 method approve (spender : Address, v : UInt) : bool{
74 guard{
75 Env.value == 0
76 }
77 storage{
78 allowances[(spender, Env.sender)] |-> v
79 }
80 effects{
81 logs Approval (Env.sender, spender, v)
82 }
83 returns True
84 }
85 method transferFrom (from : Address, to : Address, v : UInt)
86
87 guard{
88
89 Env.value == 0
90 v =/= 0
91 balances[from] >= v
92 allowances[(Env.sender, from)] >= v
93
94 -- overflow checking
95 (allowances[(Env.sender, from)] - v) < allowances[(Env.sender, from)]
96 (balances[from] - v) < balances[from]
97 (balances[to] + v) > balances[to]
98 }
99 storage

100 {
101 allowances[(Env.sender, from)] |-> allowances[(Env.sender, from)] - v
102 balances[from] |-> balances[from] - v
103 balances[to] |-> balances[to] + v
104 }
105 returns True
106
107 }


