
1

OpenSC: A High-Level Programming Language
Focusing on Smart Contract

Jun Sha js5506, Linghan Kong lk2811, Ruibin Ma rm3708, Rahul Sehrawat rs3688, Chong Hu ch3467

I. INTRODUCTION

OpenSC is a functional programming language which has similar functionality compared to Scilla
[1] and Pact [2] . It is statically typed and will support several features. It is a high-level language
that will be primarily used to implement smart contracts, which are programs that provide protocol for
handling account behavior in Ethereum.

Compared to other languages, we model contracts as some simple transition systems, with the transitions
being pure functions of the contract state. These functions are expressed from one state to another state
in a list of storage mutations.

Inspired by the MiniC language, part of the DeepSEA compiler [3] , we aim to develop a language
which allows interactive formal verification of smart contracts with security guarantees. From a specific
input program, the compiler generates executable bytecode, as well as a model of the program that can
be loaded into the Coq proof assistant. Our eventual goal is that smart contracts like storage, auction and
token can be written by OpenSC, and that these contracts can be compiled via the translator into binary
codes that can be executed on EVM.

We start from three basic types of simple smart contracts widely used in blockchain. Simplestorage
is a simple storage contract program used to describe the process of storing data; Auction is an open
auction contract program for people sending their bids where the auction is ended with the highest bid
sent to the beneficiary; Token is a token implementation program to transfer tokens, as well as allow
tokens to be approved.

II. LANGUAGE TUTORIAL

OpenSC will be a high-level functional language for writing interface and methods. There are three
main sections in OpenSC, signature, constructor, methods.

In signature section, there are storage and map declarations which are global variables user defined, event
which may be emitted, constructor and method. In constructor section, user can initialize the declarations
in interface with initial value and the constructor will always return void. Due to limit of our program,
the constructor could not be generated as EVM bytecode. For methods section, user can define their own
function for future use. In each function, there are four section is needed. Guard section is used to write
the specification, storage section is used to show the changes of value in EVM storage; effects section is
used to emit which we called log the event and returns section is used to return a value.

In signature section, users can define their declarations with type, identifier. Type supported in opensc
signature section: boolean, int, uint, address, void and map. Moreover, user can define the identifier with
letter and digit. The more details is in our language reference manual. Furthermore, there are five classes
user allowed to define in the signature section, storage class, map class, event class, constructor class and
method class. For example, in order to declare a storage data in signature, user need to first to declare
storage class with an identifier and what type is that data. To be more specific, ”storage supply : UInt” is
an example of declare a storage class with identifier, ”supply” and type uint. For map declaration, ”map
id : (type list) => type” is the general format. For event declaration, ”event id = id of (type list)” is the
general format. For constructor declaration, ”consturctor id : (type) -> void” is the general format. For
method declaration, ”method id : (type list) -> type is the general format.

Although we do not support translate the constructor into evm bytecode for now, user can define a
constructor with constructor name, parameter list, body and return type. For example,

2

1
2 constructor c (s : UInt){
3 storage
4 supply |-> s;
5 balances[Env.sender] |-> s;
6 returns void;
7 }

In order to implement a method in OpenSC, as mentioned, there are four main sections guard, storage,
effects, returns except for function name and function body. Below is an example of transfer function in
OpenSC:

1
2 method transfer (a : Address, v : UInt){
3
4 guard{
5 Env.value == 0;
6 balances[Env.sender] >= v;
7 /- overflow checking -/
8 balances[a] > balances[a] - v;
9 balances[Env.sender] > balances[Env.sender] + v;

10 }
11 storage{
12 balances[Env.sender] |-> balances[Env.sender] - v;
13 balances[a] |-> (balances[a] + v);
14 }
15 effects{
16
17 logs Transfer (Env.sender, a, v);
18 }
19 returns True;
20 }

III. ARCHITECTURAL DESIGN

Major components of the translator is shown in the following system block diagram.
Translator Architecture:

3

When the compiler takes the OpenSC source code as the input, it firstly does lexical analysis and syntax
analysis using the scanner implemented in scanner.mll and the parser implemented in parser.mly,
and generates a raw AST. Then, semantic analysis is done by the type checker implemented in semant.ml
and a “semantically checked AST” will be generated.

Similar to the minicgen.ml IR generator in the DeepSEA compiler that we learned from, for our
OpenSC, we also implemented a translator translateMinic.ml to translate our semantically checked
AST into MiniC AST, which is the IR (intermediate representation). After that, the MiniC AST can be
compiled into EVM bytecode using the backend which has already been implemented in the DeepSEA
compiler. In such a way, a smart contract such as simplestorage.sc can finally be translated into
EVM bytecode.

Specifically, key functions applied in the translation stage from our language SAST to MiniC AST
are shown in the following flow chart.

4

Translate Details:

Also, there are some helper functions to connect and help implement each function. For example,
backend_ident_of_globvar and backend_ident_of_tempvar are used to generate id with
the help of function ident_generator. For some basic datatypes and operators, we have functions
like gen_ctype, gen_unop, gen_binop as well as some type conversions to translate.

IV. TEST PLAN

We divide the test plan for four stages: parser, semantic check, Minic translation and bytecode compi-
lation and test our program sequentially with four test files in Ocaml.

We provide 43 test cases in total to test the parser and semantic check. The parser can parse all test cases
successfully and the semantic check step can pass the correct test cases and throw corresponding failure
for different types of wrong test cases. Here are part of our test cases file names. The postfix _fail"
and “ succ” represent whether this is a correct test case or a wrong test case; The prefix number \01_"
represnent the test case id; the midfix describes what content this test case tests. From these test cases, we
can show that our translator works well with the syntax we defined and checks different types, variables,
functions correctly. We use Ocamlbuild to compile our two test files for parser and semantic check
and run a bash script to do the automation test.

1 01_check_var_exist_succ.sc

2 02_check_var_exist_fail.sc

3 03_check_var_duplicate_announce_fail.sc

4 04_check_func_exist_succ.sc

5 05_check_func_exist_fail.sc

6 06_check_func_duplicate_announce_fail.sc

7 07_check_func_duplicate_implement_fail.sc

8 08_check_func_constructor_announce_once_fail.sc

9

10 ...

11

12 40_check_map_query_wrong_type_fail.sc

13 41_check_map_query_key_type_not_allowed_fail.sc

14 42_check_map_query_assign_succ.sc

15 43_check_map_query_assign_unmatch_fail.sc

5

After our translator pass all the test cases, we write several more complex programs, translate them
into Minic AST and compile them into EVM bytecode. We also write two Ocaml test file to test those
two stages respectively. Notice that we need add tag "-I backend" and "-pkg cryptokit" during
compiling our test file. Those source programs are more close to what we need in real smart contract.
There are Simple storage, auction and token. We also list the output of Minic AST and bytecode
to show our translator is functional. Notice that the backend of Minic is not supporting Event and Log
function, the output is simply omitting those part. Here we only show simple storage and token due to
page limitation. Those results show that our language OpenSc can be applied in reality and can translate
from source code to ast, sast, Minic AST and eventually EVM bytecode.

• simpleStorage

1 /- A simple storage program -/
2
3 signature SimpleStorage {
4 storage storedData : int;
5
6 constructor c : (void) -> void;
7 method set : (int) -> void;
8 }
9

10 constructor c (){
11 storage
12 returns void;

13 }
14
15 method set(x: int) {
16 guard{
17 x > 0 ;
18 }
19 storage{
20 storedData |-> x;
21 }
22 effects{}
23 returns voidlit;
24 }

Minic Ast:

Bytecode:

• token

6

1 /-
2 token implementation satisfying the ERC20

standard:
3 https://eips.ethereum.org/EIPS/eip-20
4
5 interface
6 -/
7
8 signature TOKEN{
9

10 storage supply : UInt;
11
12 map balances : (Address) => UInt;
13 map allowances : (Address, Address) => UInt;
14
15 event Transfer = Transfer of (Address,

Address, UInt);
16 event Approval = Approval of (Address,

Address, UInt);
17
18 constructor c : (UInt) -> void;
19 method totalSupply : (void) -> UInt;
20 method balanceOf : (Address) -> UInt;
21 method transfer : (Address, UInt) -> Bool;
22 method transferFrom : (Address, Address,

UInt) -> Bool;
23 method approve : (Address, UInt) -> Bool;
24 method allowance : (Address, Address) ->

UInt;
25 }
26
27
28 /- implementation -/
29
30 constructor c (s : UInt){
31 storage
32 supply |-> s;
33 balances[Env.sender] |-> s;
34 returns void;
35 }
36
37 method totalSupply (){
38 guard{
39 Env.value == 0;
40 }
41 storage{}
42 effects{}
43 returns supply;
44 }
45
46 method balanceOf (a : Address){
47 guard{
48 Env.value == 0;
49 }
50 storage{}
51 effects{}
52 returns balances[a];
53 }
54
55 method allowance (owner : Address, spender :

Address){
56 guard{
57 Env.value == 0;
58 }
59 storage{}
60 effects{}

61 returns allowances[spender, owner];
62 }
63
64 method transfer (a : Address, v : UInt){
65
66 guard{
67 Env.value == 0;
68 balances[Env.sender] >= v;
69 /- overflow checking -/
70 balances[a] > balances[a] - v;
71 balances[Env.sender] > balances[Env.sender

] + v;
72 }
73 storage{
74 balances[Env.sender] |-> balances[Env.

sender] - v;
75 balances[a] |-> (balances[a] + v)

;
76 }
77 effects{
78
79 logs Transfer (Env.sender, a, v);
80 }
81 returns True;
82 }
83
84 method approve (spender : Address, v : UInt){
85
86 guard{
87 Env.value == 0;
88 }
89 storage{
90 allowances[spender, Env.sender] |-> v;
91 }
92 effects{
93 logs Approval (Env.sender, spender, v);
94 }
95 returns True;
96 }
97
98 method transferFrom (from : Address, to :

Address, v : UInt){
99

100 guard{
101 Env.value == 0;
102 balances[from] >= v;
103 allowances[Env.sender, from] >= v;
104
105 /- overflow checking -/
106
107 allowances[Env.sender, from] - v <

allowances[Env.sender, from];
108 balances[from] - v < balances[from];
109 balances[to] + v > balances[to];
110 }
111 storage{
112 allowances[Env.sender, from] |->

allowances[Env.sender, from] - v;
113 balances[from] |->

balances[from] - v;
114 balances[to] |->

balances[to] + v;
115 }
116 effects{}
117 returns True;
118 }

7

Minic Ast: (Only show partial result for convenience)

Bytecode:

V. SUMMARY

For the whole transalator, each component is implemented through cooperation of all the team members.

scanner: Linghan Kong, Chong Hu
parser: Linghan Kong, Chong Hu, Jun Sha
AST design: Linghan Kong, Ruibin Ma, Chong Hu
semantic analysis: Chong Hu, Linghan Kong, Ruibin Ma, Jun Sha
SAST design: Linghan Kong, Ruibin Ma, Chong Hu
translate MiniC: Ruibin Ma, Linghan Kong, Chong Hu, Jun sha

A. Linghan Kong
1) Summary: In this project, I have worked on different parts of our translator from the front end to

back end. One thing that I am most impressive is that understand the whole progress of the translator
is really important. At the first, I just focus on writing the front end without the understanding Minic
properly and fully. Therefore, I need to revise the front-end of our translator after we begin writing the
translator. Therefore, fully understanding how different parts works is one of the most important and
what I learn a lot. Moreover, when reading the code, top down approach is a really good way to start
with, when I first get the Deepsea compiler, I am not sure how to start to read the code. However, I use
top-down approach to read the code and know each parts and how the minic ast looks like. Furthermore,

8

communicating with different team members is also an important approach since exchanging ideas could
be more helpful to understand the program.

2) Future Work: As a group, I think everyone did a great job and we share the knowledge base and
what we learn in order to improve project. However, I would suggest people to start early the project and
make a work pipeline.

B. Chong Hu
1) Summary: In this project, I’m mainly focusing on semantic check and part of parser and Minic

translating. In the semantic check, I check our ast and map the ast to sast. In this processing, I spend a lot
of time on revising sast and finding bugs repeatedly. In the later Minic translating, I have to do this again
and again. This procedure is very boring. So, it is very important to have a better overview design and
design ast and sast fitting what we need better. Beyond that, I realize that design and construct a language
and corresponding translator need carefulness, patience and deep insight. If we can build a translator in
the future, I believe we can do much better.

2) Future Work: All of my teammates did an excellent jobs in this language and I would like to thank
every one of them. In such a huge team project, teamwork is one of the key to work efficiently and quickly.
We need to package workload into different modules and distribute to every of us. If with appropriate
arrangement in time schedule, we may not have such intensive workload in the end of semester.

C. Ruibin Ma
1) Summary: In this project, I worked on multiple parts with teammates such as sast.ml and trans-

lateMinic.ml. This was the first time I worked on a project using a functional language (OCaml), the first
time I worked on a translator (front-end), and also the first time I collaborated with teammates remotely
(due to COVID-19) most of time during the project. Therefore I have really learned a lot: First, functional
programming is super cool; second, translator is interesting, and although it sounds complicated, there’s
no magic - as long as you spend enough time reading through the reference codes, in our case, the
DeepSEA codes, and it’s helpful to draw some flow charts; last but not least, (remote) pair (or triple,
quad) programming is a more effective way than solo programming.

2) Future Work: I would suggest future teams not spending too much time on debugging alone but
try to debug together, which is often much more efficient. If anyone is interested in continuing working
on this project, preparing some basic background of blockchain and smart contracts and some working
knowledge of OCaml or other functional programming languages could be helpful.

D. Jun Sha
1) Summary: In this project, I did quite a lot in different stages of our language compilation, especially

the semantic analysis and minic translation. In the semantic analysis, I helped return a semantic-checked
expression. For the minic translation, I have spent a lot of time understanding the details of translation
frame, particularly what each function in the minicgen.ml means and how they are connected with
each other. In our translateMinic, I implemented it from a top down perspective with my teammates,
focusing on how the identlist can be generated and polishing some basic helper functions. Besides, in the
early stage of our project, I added some pretty printing functions. Overall, I learnt a lot in this project,
with a comprehensive understanding of how to design a new language and to translate it into a given IR.
With this knowledge and experience, I have successfully got a compiler development intern in Alibaba.

2) Future Work: Since we need to polish some early parts when implementing other parts of the
translator, it is important to start as early as possible. For example, while we are doing minic translation,
we would modify and rewrite some parts of AST again and again. Also, if possible, it is helpful to
regularly meet with the project advisor and get some useful suggestions from his perspective without
taking a wrong path.

9

E. Rahul Sehrawat
My key takeaways from this course were the application of functional programming, understanding the

translator, scanner and parser and learning the language of OCaml. I think the process of understanding
a functional programming language such as OCaml is very useful in the workforce as more and more
companies start to implement their use. Regarding the translator, scanner and parser, it was very cool to
break apart grammer and understand the semantics and syntax like a computer would and then construct
a robust language that a machine can process.

ACKNOWLEDGEMENTS

Thanks to Professor Ronghui Gu, the instructor of our course, who brought us to the PLT world and
let us realize the charm of functional programming and formal verification, both of which are what our
project is based on.

Thanks to River Dillon Keefer and Amanda Liu, TAs of our course, who introduced the DeepSEA
project to us and provided very inspiring and helpful ideas on the OpenSC language syntax among other
project details.

Thanks to Vilhelm Sjöberg, our project advisor, researcher at Yale and the primary creator of the
DeepSEA project, who provided us with great information on everything about the DeepSEA project, and
answered our many questions, which has been super helpful.

REFERENCES

[1] Language Scilla: https://scilla.readthedocs.io/en/latest/
[2] Language pact: https://github.com/kadena-io/pact
[3] Language DeepSEA: https://certik.io/blog/technology/an-introduction-to-deepsea

https://scilla.readthedocs.io/en/latest/
https://github.com/kadena-io/pact
https://certik.io/blog/technology/an-introduction-to-deepsea

	Introduction
	Language Tutorial
	Architectural Design
	Test Plan
	Summary
	Linghan Kong
	Summary
	Future Work

	Chong Hu
	Summary
	Future Work

	Ruibin Ma
	Summary
	Future Work

	Jun Sha
	Summary
	Future Work

	Rahul Sehrawat

	References

