
COMS E6998 Final Project Report
Cloud Travel Planner

Chong Hu (ch3467), Wenjie Chen (wc2685), Xinyue Wang (xw2647). Yuanmeng Xia (yx2548)

Problem Statement 1

Overall Architecture 2

Scenarios 4

High-level details of implementation 5
Frontend Implementation 6

Overall Page Design 6
Details 6

Backend Implementation 13
API Design 13
Lambda functions: 15
ElasticSearch 17
Email Sending 17
Amplify 18
Cognito 19
Lex Chatbot 19
AppSync 19
Pinpoint 20
GoogleMap API Integration 20
Data schema 20

Conclusion 25

Problem Statement
Planning can be extremely complex when multiple people are involved in one trip. We try to
build a web application dealing with travel planning, including attraction recommendations,
schedule arrangement, and collecting partners’ opinions. By using this application, you can
have a list of attractions without worrying about not having a choice. And you will get a detailed
schedule arrangement with clear instructions. Last but not least, you can share your schedule
with your partners allowing them to edit the schedule with you or just let them mark their choices
to help you make the decision. You can even chat with them in a small chat room. It is a scale
application based on AWS.

Overall Architecture

Figure 1. Overall Architecture part 1

Figure 2. Overall Architecture part 2 (chat room function)

As a web application for travel planning, our functions fall into 3 main categories, namely
user-related, schedule-related, and attraction-related. Our overall architecture is shown in figure
1. It primarily uses Amazon Web Service, which provides our application reliability and
scalability. We use AWS Cognito to manage our user identities. A user can create a travel
schedule through Lambda Function by adding various places of interest by searching in elastic
search. Users can also invite his/her friends by email through AWS SQS and SES service.
Other details will be introduced later.

The whole application is deployed via AWS Amplify, which is a set of tools to build scalable
full-stack applications. The Amplify service will call CloudFormation to construct backend
services and use CloudFront to deploy the front end web application. Amazon CloudFront is
integrated into the application to ensure low latency data transfer.

The frontend directly interfaces with Amazon Lex, AppSync, S3 bucket, Google API. It interacts
with API Gateway to call backend functions and get corresponding responses to show in the
front. After users determine their schedule, the output pdf file representing the schedule can be
downloaded through the frontend, which is denoted in figure 1 as documents, by calling the
backend Lambda.

All backend logic is implemented in the AWS Lambda and other AWS cloud services. Lambda
functions work with AWS services including API Gateway, Cognito, Elastic Search, DynamoDB,
S3, SQS, and SNS. As mentioned above, API Gateway is how the frontend calls the backend.
Amazon Cognito provides user authentication and identification for the whole application. In our
backend service, ElasticSearch is responsible for searching for attractions. All data except

images are stored in DynamoDB. S3 bucket is introduced to store image data. SNS is applied
here to notify the user about the invitation. Before calling SNS to send an email, all requests will
be pushed into an SQS. And then to allow the asynchronous processing, the trigger activated by
CloudWatch Event is added to the function calling SNS.

Scenarios

For the primary editor or in our application case we call it schedule owner, the basic flow is like:

1. If the user already has an account, log in to the account; if not, sign in to an account and
then log in.

2. After logging in, there are multiple functions the user can choose:
a. To create a new schedule, a new preselect type schedule will be created with title

and other related information.
b. To continue the previous schedule, depending on the scheduling stage jumps to

the corresponding step.
3. For the preselect type schedule, there are multiple functions the user can choose:

a. To invite another editor, an email notification will be sent to that user. The
invitation flow will be discussed later.

b. To modify the schedule, the user can add/remove attractions.
c. To discard the schedule, the user can delete the schedule.
d. To mark the attraction as like/dislike, the user can do so in the attraction tab

within the schedule.
e. To move the schedule to the next stage, the user can submit the schedule. This

will turn the flow to step 4. And during the transfer process, the application will
automatically fill some attractions into the schedule according to the choice the
user made when submitting.

4. For the editing type schedule, there are multiple functions the user can choose:
a. To invite another editor, an email notification will be sent to that user. The

invitation flow will be discussed later.
b. To modify the schedule, the user can move the order of attractions.
c. To discard the schedule, the user can delete the schedule.
d. To move the schedule to the next stage, the user can finalize the schedule. This

will turn the flow to step 5.
5. For the completed type schedule, there are multiple functions the user can choose:

a. The user can view the webpage containing information about your schedule.
b. The user can also download the pdf file of your schedule.

6. By clicking the chat room button on the side navigation bar, the user can join a private
chat room.

For the co-editor who is invited to edit the schedule owned by another user, the basic flow is:

1. Click the invitation link. If the user already has an account, log in to the account; if not,
sign in to an account and then log in. Then accept the invitation.

2. Depending on the scheduling stage jumps to the corresponding step.
3. For the preselect type schedule, there are multiple functions the co-editor can choose:

a. To modify the schedule, the co-editor can add/remove attractions.
b. To mark the attraction as like/dislike, the co-editor can do so in the attraction tab

within the schedule.
c. To move the schedule to the next stage, the co-editor needs to wait for the owner

to submit the schedule.
4. For the editing type schedule, there are multiple functions the co-editor can choose:

a. To modify the schedule, the co-editor can move the order of attractions.
b. To move the schedule to the next stage, the co-editor needs to wait for the owner

to finalize the schedule. This will turn the flow to step 5.
5. For the completed type schedule, there are multiple functions the co-editor can choose:

a. Co-editor can view the webpage containing information about your schedule.
b. Co-editor can also download the pdf file of your schedule.

6. Co-editor can join the private chat room by clicking the chat room button on the side
navigation bar.

High-level details of implementation

In this section, we will first discuss the high-level implementation details of our backend
structure. The most important part of our backend is how to design different Lambda functions
and how to invoke other AWS cloud services. Then we give a brief introduction about other core
components, our data schema in the storage, and how to organize backend APIs. After that, we
will present the frontend implementation.

Frontend Implementation

Overall Page Design

Figure 3. Overall Page Design

Details

We have 9 view pages with different components to complete this project.

● Login Page
A registered user will be able to login into our website with his account.

Figure 4. Login page

● Sign Up Page
A new coming user will be able to create an account with his email address.

Figure 5. Sign up page

● Verify Email Page
A new coming user will receive a verification code, and by entering the correct code, an
account is successfully created. Then this user will be redirected to the login page to
start his trip planning.

Figure 6. Verify email page
● Home Page

On the home page, a user can either create a new trip plan by selecting the destination
and clicking the button or talking with our bot. Also, by clicking on the “Continue” button,
he can review all his schedules and take the next step.

Figure 7. Home page

● Schedule List Page

On the schedule list page, a user can either delete one schedule or continue with one by
clicking on edit.

Figure 8. Schedule list page

● Preselect Page
In the Preselect Page, a user can add or delete attractions from his wish list. For the
attractions presented in the left hand, a user can enter a keyword to search for specific
attractions, like nature or iconic. To see more details, he can click the view button to see
a popup chart with more information about this attraction.

At the right-hand table, a user can add a like or cancel a like for each attraction selected.
For the schedule owner, he can decide whether this attraction is good enough to visit by
considering the like count and click the finish selection button. After that, our website will

ask what trip mode the user likes to do a recommendation and prepare a schedule for
him. For the user who has created the schedule with our chatbot, we stored his
preference and he can just click the next step button to continue.

Figure 9. Preselect page

Figure 10. Preselect view detail page

Figure 11. Preselect like count page

Figure 12. Preselect like finish selection page

● Schedule Edit Page
On this page, a recommended trip schedule is displayed. Users can drag each item from
one card into another card to modify the tour order. By clicking the green globe button, a
map marked with all attractions on that day will be displayed. Click on the submit button,
users will be redirected to the review page.

Figure 13. Schedule Edit page

Figure 14. Schedule Edit view maps popup

● Schedule Review Page
On this page, a final review of the trip schedule will be displayed. By clicking on the
download button, a pdf generated by our server will be downloaded automatically.

Figure 15. Schedule Review page

Figure 16. Schedule auto-download page

● Invitation Accept Page

On this page, a user who received an invitation from the schedule owner can log in to his
account and by clicking the accept button, a page that an owner wants his friends to see
will be displayed.

Figure 17. Invitation Accept page

● Online Chat Page

By clicking the chat button on the side navigation bar, a new window will be opened, and
users who have the access to this schedule can have an online chat here. Also, by
clicking the title, a list of users who are in this schedule will be displayed.

Figure 18. Private chat room page

● Navigation bars

We designed two types of navigation bars to give our users a better experience.

Figure 19. Overall Page Design

Backend Implementation

API Design
API Gateway

● GET /accept/{scheduleId}: accepts the invitation

○ scheduleId [string] (path parameter) required
○ editorId [string] (query parameter)

● GET /attraction/_search: searches the attraction according to query parameters
○ pageNo [string] (query parameter)
○ pageSize [string] (query parameter)
○ q [string] (query parameter)

● POST /chatbot: communicates between LEX and the frontend and creates PRESELECT
schedule

● GET /invite/{userId}: sends invitation
○ userId [string] (path parameter) required
○ scheduleId [string] (query parameter)

● GET /schedule: retrieves schedule list by user id
○ pageNo [string] (query parameter)
○ pageSize [string] (query parameter)

● POST /schedule: creates a preselect type schedule
○ userId [string] (query)
○ targetArea [string] (query)
○ scheduleTitle [string] (query)

● GET /schedule/{scheduleId}: retrieves a schedule
○ scheduleId [string] (path) required

● POST /schedule/{scheduleId}: updates a schedule
○ scheduleId [string] (path) required
○ EditingSchedule [object] (body) required

■ Example:

● DELETE /schedule/{scheduleId}: deletes a schedule

○ scheduleId [string] (path) required
● PATCH /schedule/{scheduleId}: partially updates a schedule

○ scheduleId [string] (path) required
○ EditingSchedule [object] (body) required

● GET /schedule/{scheduleId}/attraction/{attractionId}: retrieves like/dislike information for
a certain attraction in the schedule

○ scheduleId [string] (path) required
○ attractionId [string] (path) required

● POST /schedule/{scheduleId}/attraction/{attractionId}: updates like/dislike information for
a certain attraction in the schedule

○ scheduleId [string] (path) required
○ attractionId [string] (path) required

● PUT /schedule/{scheduleId}/attraction/{attractionId}: generates initial like/dislike
information for a certain attraction in the schedule

○ scheduleId [string] (path) required
○ attractionId [string] (path) required

● DELETE /schedule/{scheduleId}/attraction/{attractionId}: deletes an attraction in a
schedule

○ scheduleId [string] (path) required
○ attractionId [string] (path) required

● GET /schedule/{scheduleId}/download: returns a pdf file containing schedule information
○ scheduleId [string] (path) required

● GET /schedule/{scheduleId}/finish: transfers a certain schedule from editing stage to
completed stage

○ scheduleId [string] (path) required
● GET /schedule/{scheduleId}/submit: transfers a certain schedule from preselect stage to

editing stage and pops some attractions to the schedule without user’s preference
○ scheduleId [string] (path) required

● POST /schedule/{scheduleId}/submit: transfers a certain schedule from preselect stage
to editing stage and pops some attractions to the schedule according to the user’s
preferences

○ scheduleId [string] (path) required
○ userId [string] (query)
○ schedule [object] (body)

Lambda functions:

● proj_attraction_searcher:
○ Endpoint path: /attraction/_search
○ Method: GET

This Lambda function calls ElasticSearch querying with user’s inputs and returns a list of
attractions with their detailed information with specific page size and the page number. In
ElasticSearch, we store attraction area, attraction name, attraction type, created
timestamp, labels, object key. Some of the return information like the image URL
requires the frontend to download and display. And the remaining part allows the
frontend to show directly.

● proj_schedule_handler:
○ Endpoint path: /schedule/{scheduleId}
○ Method: DELETE, GET, PATCH, POST

This Lambda function is responsible for deleting, retrieving, partially updating, and
completely updating after creating a schedule which the function
proj_schedule_initializer does. The function of this Lambda is to manipulate the
DynamoDB table “scheduleTable”.

● proj_schedule_attraction_selector:
○ Endpoint path: /schedule/{scheduleId}/attraction/{attractionId}
○ Method: DELETE, GET, POST, PUT

https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_attraction_searcher
https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_schedule_handler
https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_schedule_attraction_selector

This Lambda function provides users with the ability to indicate whether they like or
dislike the corresponding attractions in the preselect type schedule. The DELETE
method is used to delete a certain attraction in a preselect type schedule. The GET
method allows the user to access attraction vote information. The POST method is used
to add/reduce like counts for a certain attraction. The PUT method is used for the first
time attraction add. All users who have voted for a certain attraction will be recorded in
DynamoDB.

● proj_invite_user:
○ Endpoint path: /invite/{userId}
○ Method: GET

This Lambda function pushes messages needed to be further sent in an email into an
SQS. The actual sending request will be handled in proj_send_invitation.

● proj_login_cognito2db:
○ Trigger after a user is confirmed in Cognito.

This function will store user id, user name, and user email gotten from Cognito into
DynamoDB table “userTable” and “usersTable”

● proj_send_invitation:
○ Trigger by Cloud Watch Event.

This function will send schedule id, schedule owner name, and an invitation accept URL
to the invited user.

● proj_schedule_initializer:
○ Endpoint path: /schedule
○ Method: GET, POST

The GET method here will return a list of schedule according to the user id, page
number, and page size. The POST method will create a preselect type schedule for the
user and return the schedule information.

● proj_generate_pdf:
○ Endpoint path: /schedule/{scheduleId}/download
○ Method: GET

This Lambda function will return a pdf file containing schedule information according to
the schedule id given in the path parameter.

● proj_accept_invitation
○ Endpoint path: /accept/{scheduleId}
○ Method: GET

This Lambda function will add the invited user id to the schedule editor id list.

● proj_schedule_submitter
○ Endpoint path: /schedule/{scheduleId}/submit

https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_invite_user
https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_send_invitation
https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_login_cognito2db
https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_send_invitation
https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_schedule_initializer
https://console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_generate_pdf
https://us-east-1.console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_accept_invitation
https://us-east-1.console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_schedule_submitter

○ Method: GET, POST
This function will transfer the schedule from the PRESELECT stage to the EDITING
stage. And during the transfer process, the function will add attractions to the schedule
based on the user’s choice for travel mode (busy, medium, or relax), attraction
preference, number of trip days, and the score of attractions. This step includes
attraction/schedule recommendation, making the user plans the travel easily.

● proj_schedule_finalizer
○ Endpoint path: /schedule/{scheduleId}/finish
○ Method: GET

This function will transfer the schedule from the EDITING stage to the COMPLETED
stage.

ElasticSearch
To help users better search attractions in our system, we indexed all attractions provided by our
system with corresponding labels in our ElasticSearch service. Each attraction is identified by its
unique id and the Lambda Function can acquire additional information from DynamoDB based
on that id. Currently, we provide attraction names, attraction area, attraction type, and labels for
users to search for different attractions. In ElasticSearch, the information is organized as
follows.

Email Sending
SNS is applied here to notify the user about the invitation. Users can add their friends through
email and all invitations will be handled by the Lambda function. Before calling SNS to send an

https://us-east-1.console.aws.amazon.com/lambda/home?region=us-east-1#/functions/proj_schedule_finalizer

email, all requests will be pushed into an SQS. And then to allow the asynchronous processing,
the trigger activated by CloudWatch Event is added to the function calling SNS.

Figure 20. Email Sending

Amplify
AWS Amplify is a set of tools to build scalable full-stack applications. The Amplify service will
call CloudFormation to construct backend services and use CloudFront to deploy the front end
web application. In our project, we use Amplify to manage our backend components, like
Cognito(auth), Appsync(chat room), and Lex(chatbot). The Amplify service will also listen to our
git repo. Each time we revise our code, the service will update the CloudFormation stack and
re-deploy our frontend page if needed. We can manage our whole project, both frontend, and
backend, in the Amplify console.

Figure 21. Amplify Console

Cognito
We use Cognito to manage our user identities. Users need to sign in / sign up to use our cloud
travel planner. If and only If a user with the corresponding authentication, he/she can do the
corresponding operation.

Lex Chatbot
After users sign in to our cloud travel planner, they can talk with the chatbot to create a new
schedule. Our frontend page is connecting to Lex directly through Amplify. Amplify will configure
the chatbot and let the front-end communicate with the backend chatbot. Our chatbot can help
you to create a new schedule with only a few steps. The Lex Chatbot is integrated with frontend
UI as follows.

Figure 22. Chatbot

AppSync
We use AppSync to build multiple private chat rooms for our website. For each schedule, a
private chat room is created, and when the friends of the owner accept the invitation, he will
have access to the private chat room. With managed GraphQL subscriptions, AWS AppSync can
push real-time data updates over Websockets to the users in the same chat room, hence an online
chat is successfully implemented.

Figure 23. AppSync Console

Pinpoint
To send advertisements and new updates to customers, we use Pinpoint for segmenting them
into different groups such as user A like nature, user B like art, etc. sending emails to them
weekly. Thus our platform connects with customers over channels. Amazon Pinpoint can grow
with the app and scale globally to billions of messages per day across channels. This is a draft
of our new update through email sending by Pinpoint.

Figure 24. Overall Page Design

GoogleMap API Integration
To give users a better experience, GoogleMap API is utilized in this project. We first stored the
latitude and longitude coordinates for each attraction in our DynamoDB, and when a user wants
to see more information about one attraction, or his schedule, by clicking the button, our
frontend service will call the GoogleMap API with according coordinates, and the more detail
information including google map result will be displayed after getting a response from google.

Data schema
● DynamoDB: `userTable`

○ Content:
■ userId (column): [string] user id. uuid
■ userName (column): [string] user name

■ userEmail (column): [string] user email
■ pwd (column): [string] user password
■ editableSchedules (column): [list] editable schedule list

● editableSchedule (list element): [string] schedule id
○ Example:

● DynamoDB: `attractionTable`
○ Content:

■ attractionId (column): [string] attraction id, uuid with prefix
■ attractionName (column): [string] attraction name
■ attractionDescription (column): [string] [not required] attraction description
■ attractionArea (column): [string] attraction location city
■ attractionLocation (column): [map] attraction in google map

● lat (key): [number] latitude
● lng (key): [number] longitude

■ attractionType (column): [String] attraction type
■ score (column): [number] [0-5] attraction score
■ estimateViewTime (column): [number (in second)] estimated view time
■ attractionImgs (column): [list] attraction image list

● attractionImg (list element): [map]
○ bucket (key): [string] image bucket in S3.
○ createdTimestamp (key): [string (unix time)] created time

‘2020-11-12T12:40:02.001798’.
○ objectKey (key): [string] image object key in S3

○ Example:

● DynamoDB `scheduleTable`
○ Content:

■ scheduleId (column): [string] attraction id, uuid with prefix
■ scheduleTitle (column): [string] [not required] schedule title shown in

front-end. Use ‘<ownerName>-<ScheduleId>’ by default for front-end.
■ revisedTimeStamp (column): [string (unix time integer)] last revised time
■ targetArea (column): [string] target location city.
■ ownerId (column): [string] owner user id
■ editorIds (column): [list] editor user ids

● editorId (list element): [string] editor user id.
■ scheduleType (column): [string] schedule type for different stages.

● PRESELECT is a stage that only contains user-interested
attractions.

● EDITING is a stage that the draft schedule is generated and all
editors can edit the schedule.

● COMPLETED is a stage that a schedule is generated and no one
can edit the schedule.

■ scheduleContent (column): [list] schedule content. Differs from different
schedule types.

● For PRESELET schedule: [Map]
○ attractionId (Key): [Map] selected attraction id

■ isSelected (Key): [boolean] whether owner selects
as must-visiting place

■ selectedNumber (Key): [number] how many user
select this attraction

■ selectedUsers (Key): [list] users that select this
attraction

● selectedUser (list element): [string] user id
● For EDITING/COMPLETED schedule: [Map]

○ dayScheduleContents(Key): [list]
■ dayScheduleContent(list element):[Map]

● Details(Key): [list]
○ attractionId(list element): [string]

attraction id
● NumDate(Key): [string] indicates the day

number in format like “day1”
○ metaData(Key):[string] describe the data

○ Example:
■ For PRESELECT schedule:

■ For EDITING/COMPLETED schedule:

● Attraction Image Bucket

○ S3 bucket
■ ObjectKey: image file name
■ Object: image file

● Chat Room

○ DynamoDB “conversationsTable`

■ Content:
● id (column): [string] scheduleId
● name (column): [string] scheduleId
● createdAt (column): [date] create date

○ DynamoDB “messagesTable`

■ Content:
● conversationId (column): [string] scheduleId
● createdAt (column): [date] create date
● content (column): [string] message

○ DynamoDB “userConversationsTable`

■ Content:
● userId (column): [string] userId
● conversationId (column): [string] scheduleId

○ DynamoDB “usersTable`
■ Content:

● cognitoId (column): [string] cognitoId
● id (column): [string] cognitoId
● username (column): [string] username
● registered (column): [boolean] true

Conclusion
In this project, we build a Cloud Travel Planner system based on AWS Cloud services. We use
different AWS cloud services to manage, build, integrate, and deploy our project. Our project
primarily uses Amazon Web Service, which provides our application reliability and scalability.
We use AWS Cognito to manage our user identities. Amplify is applied in our project to manage
our frontend and backend and deploy our project on the cloud. DynamoDB is used as data
storage in the backend to store different types of information. Different Lambda Functions are
used to provide different serverless functionalities. We use Lex to provide a chatbot for users to
create a trip schedule conveniently and quickly. A chat room based on AppSync is integrated
into our project so that users of one schedule can chat with each other. Beyond that, many other
services are applied in our project to provide more functionalities and more features. It’s a good
opportunity to practice how to utilize different functionalities on the cloud.

