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Introduction

In order to help Reapor build the music platform, we designed the music
recommendation system
@ Preparations

e Analyze songs from Million Song Dataset (MSD) [1]
e Use Hadoop cluster to store data and do operations

e Execute Drill query to search for useful information

@ Recommendation System
o Breadth First Search for similar artists
o Genre prediction

e Final Pipeline Structure
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© Data Processing
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Data Processing

We extract h5 files from avro files on hdfs
@ avro schema: filecontent, filename, checksum
Then, we convert hb files to csv files
@ use hdfb-java
@ extract the only one artist term which has the largest weight

@ 27 attributes, such as, similar_artists, artist_hotness, tempo...

avro —_— h5 - csv
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© Dril
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@ The dataset we use for Drill is A directory to N directory (A2N.csv)

@ The range of dates covered by the songs in the dataset, i.e. the age
of the oldest and of the youngest songs.

columns[8]), MAX(columns[8])

ihere columns[8] <> and columns[8] <>

fm e fmmmmm——— +
| EXPRSE | EXPRS1 |

6.949 seconds)

@ Find the hottest song (0.9) that is the shortest

title: Wake (Album Version)
hotness: 0.9271
duration: 100.91s
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o highest energy with lowest tempo. However, all energy is 0.

@ the name of the album with the most tracks

Album: Intro  Count: 831

@ the band who recorded the longest song. (no band, artist instead)

album: Alice Coltrane duration: 999.76s I
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Contents

@ Recommendation System
@ Breadth First Search
o Genre Prediction
@ Final System Architecture
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Parallel BFS

e Maintain a result list of nodes: (artist, (similar artist, d, status))
@ Map function: Explore and add nodes to the list

@ Reduce function: Combine the nodes with same key

@ lterate until no node to explore
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Results of BFS

ARRNQMS11F50C4E38!

2 ARQIAWL1187B9A96DO
ARYQLYJ11F50C49FC2,4
4 ARQ6LU71187B98A31E, 4
ARO6SRC1187B98F3B6, 3
ARTWBUH12454A43277,1
ARL3HWI1187FB5638A,4
3 AR553M51187B98BCE7, 2
ARKGBWV1187B988D5E, 2
ARHFORW1187B9B5098B, 2
RGSFAJ11F50C4DEEB, 3
> ARMNDIJ1187B9AQ9EA, 3
ARR960Z1187B990E59, 2
} AR8QJHN1187FB3616E,2
ARQL9SK1187FB41D84,2
ARR32]Q1187FB42A2A,2
ARRXSSI12BABO79E45,3
3 AR1LWLE1187FB3FBBC, 2
ARC5EHQ1187FB4834F, 1
ARZFYGS12AA61C8E37,4
ARYQOXF12454A38B47,3
2 ARKY@VI1187B9952E1,3
ARR7MUX1187FB56F65,3
} ARLINIT1241B9CB4F4,2
ARC5JAZ1187B98EA82,2
ARMCGQI1187FB49DDE, 2
ARPXZES1187B99DD71,3
3 ARGC7LW1187B9AF7BB, 2

uan Gao, Weijie Ye, Xining Wa Chong H Music Recommendation Syste| st 2, 2019 11 /30



MapReduce vs Spark

Environment:
method
OS 4.15.0-55-generic Unbuntul8.04 £ 15000- PEp—
=
CPU | intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz x8 )

/

10873 21742 31848
size

@ Spark is more efficient because less 1/O
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Genre Prediction

Our job in genre prediction is to investigate genre inside different jazz.
The total dataset of jazz we used is roughly about 30000.

© Feature Selection
@ Pre-Scaling based on Naive Bayes
© Comparison between Hierarchical and K-mean Clustering

@ Drawbacks and Corresponding Solution
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Feature Selection

Our strategy to select feature is to pick useful variables that could be easily
handled. In this scenario, we pay more attention to numerical variables.

@ How to drop variables.

year

elements | elements with zero year —
31847 15493

1960 1980 2000
L L L

1940
L
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Feature Selection

@ How to select variables: Use the artist_term as standard since it
has a lot of hidden information. Variable that has large variety in
artist_term would contain more unique features of that song.

i

fouer

Yuan Gao, Weijie Ye, Xining Wang, Chong H Music Recommendation System August 2, 2019 15 / 30



Pre-Scaling based on Naive Bayes

Why need to pre-scale data

Different variables have different varieties; different variables have different
scaled importance of embedded information.

How to scale data

@ It would be common to treat this as a single classification problem to
tell which label the song has.

@ However, classification couldn’t rely too much on the label and ignore
some features in certain degree. Besides, different jazz label may also
have a large overlap.

@ To solve those problems, our strategy is to use jazz label as prior to
guide our scaling. In this way, we can combine the label information
and features inside data.
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How to scale data

How to apply the label prior information:

@ Gaussian Naive Bayes model

n

y = argmax P(y) [ P(xily)
Y i=1

fit
|
[ |

naive bayes
‘ feature }—-{ embedding

model
pre-scale

Based on the embedding information, we could run the clustering
algorithm to dig more features inside data.
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Comparison between Hierarchical and K-mean Clustering

To select a better algorithm, we run both hierarchical clustering and
K-mean clustering on the data set.
@ For K-mean clustering, we use K-mean++ strategy to assign initial
value and run several time to find the global optimum.
@ For hierarchical clustering, we apply Ward's method as criterion in
cluster analysis.

@ To visualize the effectiveness of two clustering method, we use the
first two and three components to draw 2D and 3D plots.
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Comparison between Hierarchical and K-mean Clustering

Hierarchical Clustering

Hierarchical Tree Hierarchical 2D scatter plot Hierarchical 3D scatter plot

Yuan Gao, Weijie Ye, Xining Wang, Chong H Music Recommendation System August 2, 2019 19 /30



Comparison between Hierarchical and K-mean Clustering

K-mean Clustering

ez Data - Kmean Clstering

K-mean 2D scatter plot K-mean 3D scatter plot
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Comparison between Hierarchical and K-mean Clustering

From previous plots, we can clear see that K-mean could better deal with
clustering in this problem.

K-mean 3D scatter animation hierarchical 3D scatter animation
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



Drawbacks and Corresponding Solution

Drawbacks and Corresponding Solution

Since we may have some hard boundary in K-mean clustering some
obscure data points may have multiple attributes. We decide to provide a
granularity selection for user so that they can find more specific genre or

more general songs
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Diagram

‘ E— Song — Artist

Adjacent Matrix
(BFS)

Songs <«<— | Similar Artists| «——

— | Similar Songs | — “»Recommend!

Offer variations:
@ The depth of BFS
@ The number of class for the classifier
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Contents

© Discussion
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Discussion

Remaining Issues

o Inefficient storing of data for adjacency matrix
@ BFS can eat up memory easily

Further Improvements

@ Other algorithms to build adjacency matrix

@ Combine with user behavior

A\

Yuan Gao, Weijie Ye, Xining Wang, Chong H Music Recommendation System August 2, 2019 26 / 30



@ Conclusion
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Conclusion

We successfully build a song recommendation system based on clustering.
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